References

[1] Reimers, N., & Gurevych, I. (2019, November). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3982-3992).

[2] Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE Transactions on Big Data, 7(3), 535-547.

[3] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., ... & Sutskever, I. (2021, July). Learning transferable visual models from natural language supervision. In International conference on machine learning (pp. 8748-8763). PmLR.

[4] Jia, C., Yang, Y., Xia, Y., Chen, Y. T., Parekh, Z., Pham, H., ... & Duerig, T. (2021, July). Scaling up visual and vision-language representation learning with noisy text supervision. In International conference on machine learning (pp. 4904-4916). PMLR.

[5] Karpukhin, V., Oguz, B., Min, S., Lewis, P. S., Wu, L., Edunov, S., ... & Yih, W. T. (2020, November). Dense Passage Retrieval for Open-Domain Question Answering. In EMNLP (1) (pp. 6769-6781).

[6] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., ... & Kiela, D. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33, 9459-9474.

[7] Aguerrebere, C., Bhati, I. S., Hildebrand, M., Tepper, M., & Willke, T. (2023). Similarity Search in the Blink of an Eye with Compressed Indices. Proceedings of the VLDB Endowment, 16(11), 3433-3446.

[8] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997, 2(1).

[9] Gupta, S., Ranjan, R., & Singh, S. N. (2024). A comprehensive survey of retrieval-augmented generation (rag): Evolution, current landscape and future directions. arXiv preprint arXiv:2410.12837.

[10] Zamani, H., & Bendersky, M. (2024, July). Stochastic rag: End-to-end retrieval-augmented generation through expected utility maximization. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2641-2646).

[11] Yu, H., Gan, A., Zhang, K., Tong, S., Liu, Q., & Liu, Z. (2024, August). Evaluation of retrieval-augmented generation: A survey. In CCF Conference on Big Data (pp. 102-120). Singapore: Springer Nature Singapore.

[12] Pan, J. J., Wang, J., & Li, G. (2024). Survey of vector database management systems. The VLDB Journal, 33(5), 1591-1615.

[13] Asai, A., Wu, Z., Wang, Y., Sil, A., & Hajishirzi, H. (2024). Self-rag: Learning to retrieve, generate, and critique through self-reflection.

[14] Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., ... & Neubig, G. (2023, December). Active retrieval augmented generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (pp. 7969-7992).

[15] Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. (2020, November). Retrieval augmented language model pre-training. In International conference on machine learning (pp. 3929-3938). PMLR.

[16] Izacard, G., Lewis, P., Lomeli, M., Hosseini, L., Petroni, F., Schick, T., ... & Grave, E. (2023). Atlas: Few-shot learning with retrieval augmented language models. Journal of Machine Learning Research, 24(251), 1-43.

[17] Pan, J. J., Wang, J., & Li, G. (2024). Survey of vector database management systems. The VLDB Journal, 33(5), 1591-1615.

[18] Abootorabi, M. M., Zobeiri, A., Dehghani, M., Mohammadkhani, M., Mohammadi, B., Ghahroodi, O., ... & Asgari, E. (2025). Ask in any modality: A comprehensive survey on multimodal retrieval-augmented generation. arXiv preprint arXiv:2502.08826.

Last updated